Trigonometrie | |
|
|
| |
| cos2x + sin2x = 1 |
|
|
| sin(x+y)=sinx cosy + cosx siny |
|
|
| sin(x-y)=sinx cosy - cosx siny |
|
|
| cos(x+y)=cosx cosy - sinx siny |
|
|
| cos(x-y)=cosx cosy + sinx siny |
|
|
| tg(x + y)=(tgx + tgy)/(1 - tgx tgy) |
|
|
| tg(x - y)=(tgx - tgy)/(1 + tgx tgy) |
|
|
| sinx cosy=1/2 *(sin(x + y) + sin(x - y)) |
|
|
| cosx cosy=1/2 *(cos(x + y) + cos(x - y)) |
|
|
| sinx siny=1/2 *(cos(x - y) - cos(x + y)) |
|
|
| sin2x=2sinx cosx |
|
|
| cos2x= 1 - sin2x |
|
|
| sin3x=3sinx - 4sin3x |
|
|
| cos3x=4cos3x - 3cosx |
|
|
| sinx + siny=2sin[(x+y)/2] cos[(x-y)/2] |
|
|
| sinx - siny=2sin[(x-y)/2] cos[(x+y)/2] |
|
|
| cosx + cosy=2cos[(x+y)/2] cos[(x-y)/2] |
|
|
| cosx - cosy=2sin[(x+y)/2] cos[(y-x)/2] |
|
|
| 1 - cosx=2sin2(x/2) |
|
|
| 1 + cosx=2cos2(x/2) |
|
|
tg(x/2)=t | sinx= 2t/(1+t2) |
|
|
tg(x/2)=t | cosx=(1-t2)/(1+t2) |
|
|