Algebra | |
logaa=1 | |
loga1=0 | |
alogab=b | |
logba=logca/logcb | |
logaxy=logax + logay | |
logax/y=logax - logay | |
a2 - b2=(a + b)(a - b) | |
(a + b)2=a2 + 2ab + b2 | |
(a - b)2=a2 - 2ab + b2 | |
(a + b)3=a3 + 3a2b + 3ab2 + b3 | |
(a - b)3=a3 - 3a2b + 3ab2 - b3 | |
a3 - b3=(a - b)(a2 + ab + b2) | |
a3 + b3=(a + b)(a2 - ab + b2) | |
(an) Progresie aritmetica de ratie r si primul termen a1 an=a1 + (n-1) r Sn=[(a1 + an) n]/2 |
|
(an) Progresie geometrica de ratie q si primul termen a1 an=a1 qn-1 Sn=[a1 qn - 1]/ (q - 1) |
|